加密流量分类-实践2: CNN+LSTM模型训练与测试
本文于 427 天之前发表,文中内容可能已经过时。
加密流量分类torch实践2:CNN+LSTM模型训练与测试
- 代码模板参考:CENTIME:A Direct Comprehensive Traffic Features Extraction for Encrypted Traffic Classification
1、原理
- 一维卷积处理负载数据,处理流前n个包的前m个字节
- Bi-LSTM处理包长序列,取流前seq_length的长度序列
- 模型结构类似于APP-Net 
- 模型代码: 
 ~~~
 “””
 cnn处理负载
 lstm处理包长序列
 “””- import torch 
 import torch.nn as nn
class Cnn_Lstm(nn.Module):
    def __init__(self,input_size, hidden_size, num_layers,bidirectional,num_classes=12):
        super(Cnn_Lstm, self).__init__()
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,bidirectional=bidirectional,batch_first=True)
        self.fc0 = nn.Linear(hidden_size, num_classes)
        self.fc1= nn.Linear(hidden_size*2,num_classes)
        self.cnn_feature = nn.Sequential(
            nn.Conv1d(kernel_size=25, in_channels=1, out_channels=32, stride=1, padding=12),  # (1,1024)->(32,1024)
            nn.BatchNorm1d(32),  # 加上BN的结果
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (32,1024)->(32,342)
            nn.Conv1d(kernel_size=25, in_channels=32, out_channels=64, stride=1, padding=12),  # (32,342)->(64,342)
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (64,342)->(64,114)
        )
        self.cnn_classifier = nn.Sequential(
            # 64*114
            nn.Flatten(),
            nn.Linear(in_features=64*114, out_features=1024), # 784:88*64, 1024:114*64, 4096:456*64
        )
        self.cnn=nn.Sequential(
            self.cnn_feature,
            self.cnn_classifier,
        )
        self.rnn = nn.Sequential(
            nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional, batch_first=True),
        )
        self.classifier=nn.Sequential(
            nn.Linear(in_features=2048,out_features=num_classes),
            # nn.Dropout(p=0.7),
            # nn.Linear(in_features=1024,out_features=num_classes)
        )
    def forward(self, x_payload,x_sequence):
        x_payload=self.cnn(x_payload)
        x_sequence=self.rnn(x_sequence)
        x_sequence=x_sequence[0][:, -1, :]
        x=torch.cat((x_payload,x_sequence),1)
        x=self.classifier(x)
        return x
def cnn_rnn(model_path, pretrained=False, **kwargs):
    model = Cnn_Lstm(**kwargs)
    if pretrained:
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])
    return model
class Cnn(nn.Module):
    def __init__(self,input_size, hidden_size, num_layers,bidirectional,num_classes=12):
        super(Cnn, self).__init__()
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,bidirectional=bidirectional,batch_first=True)
        self.fc0 = nn.Linear(hidden_size, num_classes)
        self.fc1= nn.Linear(hidden_size*2,num_classes)
        self.cnn_feature = nn.Sequential(
            nn.Conv1d(kernel_size=25, in_channels=1, out_channels=32, stride=1, padding=12),  # (1,1024)->(32,1024)
            nn.BatchNorm1d(32),  # 加上BN的结果
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (32,1024)->(32,342)
            nn.Conv1d(kernel_size=25, in_channels=32, out_channels=64, stride=1, padding=12),  # (32,342)->(64,342)
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (64,342)->(64,114)
        )
        self.cnn_classifier = nn.Sequential(
            # 64*114
            nn.Flatten(),
            nn.Linear(in_features=64*114, out_features=1024), # 784:88*64, 1024:114*64, 4096:456*64
        )
        self.cnn=nn.Sequential(
            self.cnn_feature,
            self.cnn_classifier,
        )
        self.classifier=nn.Sequential(
            nn.Linear(in_features=1024,out_features=num_classes),
            # nn.Dropout(p=0.7),
            # nn.Linear(in_features=1024,out_features=num_classes)
        )
    def forward(self, x_payload,x_sequence):
        x_payload=self.cnn(x_payload)
        x=self.classifier(x_payload)
        return x_payload
def cnn(model_path, pretrained=False, **kwargs):
    model = Cnn(**kwargs)
    if pretrained:
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])
    return model
class Lstm(nn.Module):
    def __init__(self,input_size, hidden_size, num_layers,bidirectional,num_classes=12):
        super(Lstm, self).__init__()
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,bidirectional=bidirectional,batch_first=True)
        self.fc0 = nn.Linear(hidden_size, num_classes)
        self.fc1= nn.Linear(hidden_size*2,num_classes)
        self.rnn = nn.Sequential(
            nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional, batch_first=True),
        )
        self.classifier=nn.Sequential(
            nn.Linear(in_features=1024,out_features=num_classes),
            # nn.Dropout(p=0.7),
            # nn.Linear(in_features=1024,out_features=num_classes)
        )
    def forward(self, x_payload,x_sequence):
        x_sequence=self.rnn(x_sequence)
        x_sequence=x_sequence[0][:, -1, :]
        x=self.classifier(x_sequence)
        return x
def rnn(model_path, pretrained=False, **kwargs):
    model = Lstm(**kwargs)
    if pretrained:
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])
    return model
## 2、运行
- 在自己的环境下修改路径,包括删除``from sequence_payload.xx import xx``下面的``sequence_payload.``
- 修改配置文件``entry``下面的``traffic_classification.yaml``的路径,与模型参数,名字
  - 训练流程代码
from utils.helper import AverageMeter, accuracy
from TrafficLog.setLog import logger
def train_process(train_loader, model, criterion, optimizer, epoch, device, print_freq):
    “””训练一个 epoch 的流程
Args:
train_loader (dataloader): [description]
model ([type]): [description]
criterion ([type]): [description]
optimizer ([type]): [description]
epoch (int): 当前所在的 epoch
device (torch.device): 是否使用 gpu
print_freq ([type]): [description]
"""
losses = AverageMeter()  # 在一个 train loader 中的 loss 变化
top1 = AverageMeter()  # 记录在一个 train loader 中的 accuracy 变化
model.train()  # 切换为训练模型
for i, (pcap, seq,target) in enumerate(train_loader):
    pcap = pcap.reshape(-1,1,1024)
    seq = seq.reshape(-1,64,1)
    pcap = pcap.to(device)
    seq = seq.to(device)
    target = target.to(device)
    output = model(pcap,seq)  # 得到模型预测结果
    loss = criterion(output, target)  # 计算 loss
    prec1 = accuracy(output.data, target)
    losses.update(loss.item(), pcap.size(0))
    top1.update(prec1[0].item(), pcap.size(0))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (i+1) % print_freq == 0:
        logger.info('Epoch: [{0}][{1}/{2}], Loss {loss.val:.4f} ({loss.avg:.4f}), Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
        epoch, i, len(train_loader), loss=losses, top1=top1))
return losses.val,top1.val
  - 验证流程代码:
 - 
## 2.1 数据预处理
原理:
- 使用flowcontainer包提取含有tcp或者udp负载的包,提取负载与ip数据包序列长度<br/>
使用:
- 将原始pcap文件放在``traffic_data``下
  - 格式:
|---traffic_data
  |---bilibili
    |--- xx.pcap
    |--- xxx.pcap
  |---qq
    |--- xx.pcap
    |--- xxx.pcap
  |--- 今日头条
    |--- xx.pcap
    |--- xxx.pcap
~~~
- 运行entry/preprocess.py,完成后复制控制台输出的label2index,粘贴到traffic_classification.yaml/test/traffic_classification.yaml
- 得到处理好的  npy_data2.2 训练
- 打开 - entry/train.py,注释或者取消注释40、41、42行,选择cnn、lstm、cnn+lstm进行训练,记得改配置文件的- model_name
- 可以打开tensorboard查看loss与acc曲线 - loss: 
 
- loss:
- acc: 
> 两图为lstm处理序列数据的tensorboard示例
2.3 测试
- 修改traffic_classification.yaml/test/evaluate为True,打开entry/train.py运行,得到评估结果
 /evaluate为True,打开entry/train.py``运行,得到评估结果 
 项目地址:lulu-cloud
 
        